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1 Introduction

The primary objective of this project has been to develop effective ultrasonic
tomographic algorithms that are applicable to the endoluminal geometry
found in prostate imaging. The method of reconstruction is that of inverse
scattering in which an unknown scatterer is recovered from the knowledge
of the fields scattered by the object in an appropriately designed scattering
geometry. It was mentioned in our previous reports, that inverse scattering
is capable of overcoming the two major limitations of conventional ultra-
sound imaging, namely, its non-quantitativeness, subjectivity and sensitivity
to speckle noise arising from multiple scattering of acoustic wave radiation.
However, numerous challenges remain before inverse scattering ultrasonic
tomography becomes feasible in real-world applications. It is well-known
that ultrasound tomography in inverse scattering is mathematically com-
plex, computationally intensive, and like any inverse solution of a physical
problem, ill-posed.[1, 3] In the previous report, we demonstrated how the ill-
posedness could be overcome by using regularization, appropriate data sets
and reconstruction techniques. Toward that a multi-wave, multi-frequency
data set was used in Tikhonov regularization with a particularly chosen L2-
norm in the object error. Moreover, the reconstructions were performed
by stepping up in grid sizes instead of computing with the full grid size
all at once. We demonstrated improved convergence using frequency hop-
ping multigrid inversion, and showed that it was possible to overcome the
problem of the local minima and improve inversion performance using this
approach. Furthermore, the regularizing character inherent in multi-gridding
was also demonstrated in the previous report. A further significant gain in
computational speed was achieved by using the adjoint fields to calculate the
gradient of the objective function eliminating thereby the computationally
intractable task of having to determine the full Jacobian matrix. The ap-
plication of inverse scattering ultrasonic tomography in quantitative tissue
imaging was convincingly demonstrated in our last progress report via the
reconstructions 2-D and 3-D Shepp-Logan tissue phantoms by nonlinear con-
jugate gradient method on the basis of multi-incident, multi-frequency data
and multi-grid reconstruction. In addition, the feasibility of the technique
was further tested by reconstructing, in addition to the tissue phantoms, a
stylized endoluminal geometry, and its was done in two different scattering ge-
ometries - the usual exterior/exterior geometry and a novel exterior/interior
or semi-endoluminal scattering configuration which was specially designed
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with a view to transurethral application.
In the final year of this project, we have continued to address the is-

sue of accelerating inversion performance. This work has focused on imple-
mentation of a preconditioning scheme for accelerating convergence of the
conjugate gradient minimization algorithm, developing and coding a fast
contrast-source inversion algorithm to provide an improved initial guess at
the scattering object, and design and implementation of a scheme for par-
allel computation of the forward model using the Message Passing Interface
(MPI). We have also recently developed a collaboration with a company
producing a commercial scanner for ultrasound tomography (in the exte-
rior/exterior geometry) and have begun to test our reconstruction algorithms
using test data. We have also developed a theoretical analysis of noise prop-
agation in inverse scattering (attached in Appendix A), analyzed acoustical
wave propagation in circular ducts of various wall conditions in the presence
of flow (attached in Appendix B), and investigated transmitted acoustic field
patterns for catheter-based IVUS transmitters.

2 Preconditioning

As regarding the solution to the problem of the computational complexity of
inverse scattering tomography in imaging the prostate (or any tissue complex
and/or endoluminal anatomy, for that matter), two recourses are available
in general: parallel computing and designing a suitable preconditioner. Both
are discussed in this report, beginning with the preconditioner first. However,
in view of the complexity of the matrix mathematics that is involved in the
preconditioner calculation, only the basic outlines and the final results are
given.

The preconditioner described here is based upon the seminal work of
Hohage.[7] The basic idea behind the preconditioner is to combine the well-
known Lanczos algorithm[4] for calculating the eigenvalues of a matrix (via
tri-diagonalization), and the orthogonal sequences of the conjugate directions
that are generated during the iterations (NLCG iteration in this project).
The first step in the design of the preconditioner is to transform the varia-
tional problem (detailed in the previous two reports) into normal equations.
It involves transforming the objective functional (that was minimized) into
the form: FTn Fn = F ′n(γ∗)TF ′n(γ∗) + αnI. F

′ is the Fréchet derivative of the
functional with respect to the unknown object γ, and αn is an iteratively
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updated regularization parameter. I is the identity matrix, the superscript
T denotes the transpose operation, and n is the stage of iteration.

The preconditioner is obtained from the eigenvalues and eigenfunctions
of the normal, symmetrical matrix, F ′n(γ∗)TF ′n(γ∗)n. Let {vj, λj, λ1 ≥ λ2 ≥
λ3 · · · } be the eigenvalues and eigenfunctions. Let r be the orthonormal-
ized conjugate direction vector that is generated within the CGNE rou-
tine, and q the vector which appears in the object (in NLCG) or in the
Newton step (in the case of the Newton method) update. In other words,
χn+1 = χn + αnF−1

n q, n being the stage of iterartion. The Lanczos tri-
diagonal matrix is built from r and q vectors. The actual computation of
the spectrum of this tri-diagonal matrix can be accomplished by any of the
available robust method for the purpose such as the QR-decomposition.[4]
The preconditioner, P, takes the form:

Pnx = αnx+
k∑
j=1

λj(x, vj)vj,

from which it follows that

P−1
n y =

1

αn
y +

k∑
j=1

(
1

αn + λj
− 1

αn

)
.

3 Contrast-Source Inversion (CSI)

In our last report, mention was made of the CSI method. We have finished
writing the MATLAB code for multidimensional CSI reconstruction using
multifrequency, multi-wave data. There are two components in CSI, namely,
the source and the object. Although the two are interdependent, their up-
dates can be performed separately. With the following definitions :

scat = the data vector.
C1 = norm(scat)2.
γ0 = the initial estimate of the object obtained by weighted backpropagating
of the measured data.
γ = the reconstructed object.
wjn = the equivalent source in the j-th incidence and in the n-th stage of
iteration.
ujn = the total field corresponding to wjn.
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uincj = the incident field.
ρjn = the data discrepancy in the j-th incidence and in the n-th stage of
iteration.
rjn = the object discrepancy in the j-th incidence and in the n-th stage of
iteration.
GD = Green’s function in the computational domain.
GS =Green’s function in the detector domain.
gwjn= gradient in the w-update.
`wn = steplength in the update of the Polak-Ribiére conjugate directions for
w.
vjn = conjugate directions in the linear conjugate gradient iteration for w.
αwn =steplength in the update of w.
gγn = gradient in the object-update.
`γn= steplength in the update of the Polak-Ribiére conjugate directions for
the object.
dγn = conjugate directions in the linear conjugate gradient iteration for the
object.
αγn = steplength in the update of the object.
* = the operation of convolution.
CD = the computational domain.
DD = the detector domain.
(·, ·)Y = the inner product on Y.∑

’ =sum over j and n.
z= the complex conjugate of z.

our implementation of CSI is as follows:

The Source Update:
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C2,n−1 =

{
′∑
|γn−1u

inc
j |2

}
.

uj,n+1 = uincj +GD ∗ wjn.
wj,n+1 = wjn + αjnvjn.

vjn = gwjn + `wnαwn.

`wn =
Re
∑′ < gwjn, g

w
jn − gwj,n−1 >CD

< gwj,n−1, g
w
j,n−1 >CD

.

αwn = −
< gwjn, vjn >CD

C1(norm(GSvjn)2 + C2,n−1(norm(vjn − γn−1GDvjn)2
.

gγjn = −[C2
1GSρj,n−1 + C2,n−1{I −GDγn−1}rj,n−1].

The Contrast Update:

gγn = C2,n−1

(∑
j wjnujn∑
j |ujn|2

− γn−1

)
.

dn = gγn + `γndn−1.

`γn =
Re
∑

< gγn, g
γ
n − g

γ
n−1 >CD

< gγn−1, g
γ
n−1 >CD

.

γn+1 = γn + αγndn.

The Polak-Ribiére steplength, αγn, is a highly involved expression contain-
ing the current updates in both the source and the contrast quantities, and
its explicit expression is not given here. We applied the CSI algorithm to
multifrequency data, but upsampling in frequency.

The backpropagated CSI image was incorporated into the NLCG routine
showing a slight reduction in the number of iterations. This suggests that a
correctly reconstructed CSI image (which is, as already mentioned, is quite
fast) as an input to the NLCG iteration would lead to faster convergence.
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4 Acquiring Experimental Data

Only recently, we have succeeded in gaining access to a commercial scanner
which can be used to generate experimental data. The scanner is owned
by a locally based breast imaging company, Techniscan Medical Systems,
Inc. As of now, Techniscan’s scanner operates in the transmission mode.
However, it is soon to be modified for reflection mode imaging which is what
is required for prostate imaging. We have already acquired some trial run,
transmission mode data. The details of the Techniscan scanner in which
the data were acquired is shown in Figure 1.[9]. It is essentially a confocal
geometry in which two-dimensional, slice-by-slice, 1800 data can be collected
in the temporal as well as in the frequency domain. The data that we acquired
were the frequency domain data. Figure 1. Techniscan Medical’s ultrasonic
scanner geometry. (a) The 128 mm × 16 mm receiver array. There are 6
rows and 160 columns, i.e., 960 elements total. The central two rows are 4.6
mm each. The next outer two rows are 1.9 mm each, whereas the rest two
rows are 1.45 mm each. (b) The plan view of the scanner. The entire system
is immersed in a water bath. The transmitter-receiver system rotate together
around an axis. The measurements are made at every 20 of roration. (c) The
focussing arrangement. Both the transmitter and the receiver are focussed
with a focal length of 60 mm.

Figure 1(a) shows the details of the scanner’s receiver array. The array
has 960 receiving elements. The length of the array is 128 mm and its width is
16 mm containing 6 rows. The central two rows are each of width 4.6 mm, the
adjacent two are 1.9 mm wide each, whereas the outermost 2 rows are each
1.45 mm wide. The transmitter which has the length of 140 mm and width of
16 mm, is made from a single piece. Figure 1(b) is the plan view of the scanner
showing the organ (scatterer) between the transmitter and the receiver, the
entire arrangement being immersed in a water bath. In order to acquire two-
dimensional slices at discrete “levels”, that is, at various heights in the object
(a prostate phantom, for example), the transmitter and the receiver are both
focussed (focal length = 60 mm), as shown in Figure 1(c), which displays the
view of the elevation. The data are first acquired by rotating the transmitetr-
receiver system around the scatterer. The measurements are made at every
20 of rotation. Because of the focusing arrangement, approximate 2-D data
at any pre-set level can be obtained by simply summing over the six bins of
the receiver array in Figure 1(a), that is, along the width of the array. The
time domain data are acquired by chirping the transmitter. These are then
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Fourier transformed into the frequency domain data. The clock rate is 33
MHz, and the FFT is performed after 1536 time intervals.

5 Parallelization of the Forward Model

For realistic imaging geometries, it is expected that anywhere from 64-256
incident waves and a corresponding number of detectors will be used in the
image reconstruction system.

6 Noise Propagation in Inverse Scattering

The propagation of noise from the detectors to the image via the recon-
struction algorithm was investigated. The algorithm in this project was:
∇γΦ = Re [ψψ+] = 0. Expressions for the covariance matrix was derived.
The covariance reduced to that of the X-ray CT under the assumptions of
linear operator and real data.[5] The analytical covariance matrix was further
specialized to the limit of the Born approximation. The variance in the Born
image pixels was found to be constant, while the covariance at a pixel was
highly peaked and decayed oscillatorily away form the pixel. These findings
were in agreement with the results obtained by the direct Born calculations.
Further details are presented in ??.

7 Acoustic Emission from an IVUS Trans-

ducer

In the last progress report, some calculations were presented regarding the
characteristics of the fields emitted by a catheter-based miniature transmit-
ter. For transurethral imaging of the prostate gland, the knowledge of the
characteristics of such transmitters is of interest. Some results of numerical
computations are shown in Figures 2. In this figure, a miniaturized emitter
is situated on the cylindrical surface of the catheter, the diameter of which
is 3 F. The emitter has a total angular width of 0.3750. The wavenumber
k0 = 50. For the Robin or the impedance catheter, the wall admittance in
the plots shown is real and its value is 15. The plots are representatives of
the emitted fields.
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Figure 2(a) results if the catheter surface is a Neumann surface, whereas
Figure 2(b) shows the results for a Robin or impedance catheter. The fields
emitted by a transmitter in an unbounded space are shown in Figure 2(c).
A comparison between Figures 2(a) and 2(b) with Figure 2(c) clearly shows
that the fields of the catheter-based transmitters are more directional than
the transmitter in the unbounded medium. The latter is an isotropic emit-
ter as opposed to the catheter-based ones. The objective is to understand
if a two-dimensional, slice-by-slice imaging is possible with the miniature
transmitters. Further studies are, however, needed for a definitive answer.

8 Key Research Accomplishments

The central objective of the project was to develop methods for imaging in-
ternal anatomies with an emphasis on imaging tissue complexes such as the
prostate gland by quantitative ultrasound so that some of the deficiencies
of conventional ultrasound imaging could be removed. Inverse scattering in
ultrasonic frequencies was proposed as the method of choice. Two key issues
are involved in the implementation of any ultrasonic inverse scattering algo-
rithm. These are: (1) efficient solutions of the Lippmann-Schwinger integral
equation of scattering - the so-called forward problem, and (2) the speed of
the numerical inversions. The latter in turn includes the problem of fast
computation of the gradient, negotiation of the local minima, and general
imaging protocols for gaining advantage in speed. The project accomplish-
ments are summarized below.

• Fast and efficient codes for the solution of the Lippmann-Schwinger
equation were written using CG-FFT. These were checked against ana-
lytical benchmark solutions. Our numerical results were found to have
a negligible error of about only 0.4 percent. It was a convincing demon-
stration of the efficacy and accuracy of the numerical codes which were
developed in this project for solving the forward problems in 2-D and
in 3-D.

• For inversions, multi-frequency data were used in order to minimize
the problem of the local minima. Moreover, the adjoint fields which
were used in the calculation of the gradient of the objective functional,
led to a significant reduction in computations. Only one extra forward
problem (per incidence) needed to be solved in this technique. The
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gradient, calculated by the method of adjoint fields, resulted in almost
identical results when compared against the brute force finite difference
calculations.

• The multigrid bootstrapping approach yielded relatively speedier re-
constructions.

• An exterior-interior or semi-endoluminal configuration was introduced
and investigated for intra-organ recosntructions during the course of
this project. It is an entirely novel scattering geometry which is ex-
pected to be useful for imaging any internal tissue anatomy as well as
imaging the lumen of a vessel.

• The feasibility of the imaging procedures that were proposed and devel-
oped, including the new semi-endoluminal configuration, were convinc-
ingly demonstrated by numerically reconstructing Shepp-Logan tissue
phantoms and stylized endoluminal phantoms in both 2-D and in 3-D.
In addition, the strength of the scatterer as high as γmax = 0.3, that
is, allowing for as much as 30 percent variation in the speed of sound
relative to the background. It is well beyond the Born limit.

• As an important contribution, we have outlined a preconditioner that
was first proposed by Hohage for the Newton methods using normal
equations. The preconditioner led to orders of magnitude gain in the
speed of the inversions. We have proposed the use of Hohage’s precon-
ditioner for the NLCG iterations, as were done in this project.

• We have written MATLAB code for rapid inversions by the Contrast-
Source-Inversion (CSI) technique that uses the perconditioned gradient
and only linear CG. All expressions in CSI are analytical, and the
method yields quite rapid inversions. However, our purpose is to use
the basic CSI in a bootstrapped frequency and upsampling to accelerate
convergence and improve accuracy of our reconstructions.

• An arrangement was made with Techniscan Medical Systems, Inc., Salt
Lake City, Utah, for using its scanner for acquiring experimental patient
data. Techniscan specializes in breast tumor imaging. Both temporal
and spectral data can be obtained. We have already acquired frequency
domain data acquired in vivo in the human breast and have begun tests
of our algorithm using this data.
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• A scheme of a parallel computation for accelerating the solution of
the inverse problem has been developed and implemented using MPI.
This approach facilitates the use of widely available computational clus-
ters (MIMD) supporting this standard protocol. While communication
overhead limits performance for small grid sizes, this becomes relatively
unimportant

• Numerical results have been obtained for the transmitted acoustic fields
of catheter-based IVUS transducers.

• Novel theoretical results on noise propagation in inverse scattering us-
ing the adjoint field gradient have been developed.

• Peripheral to the investigation of semi-endoluminal scattering, the char-
acteristics of propagation of acoustic waves in cylindrical waveguides
for various types of wall conditions were investigated both theoretically
and numerically.

9 Reportable Outcomes

The accomplishments cited above have been translated into an invited lec-
ture, a refereed journal publication, and one paper submitted to a peer-
reviewed journal, and one paper in preparation for submission to a peer-
reviewed journal:

• DN Ghosh Roy, John Roberts, Matthias Schabel and SJ Norton, Noise
propagation in linear and nonlinear inverse scattering, J. Acous. Soc.
Am., vol. 125, May 2007.

• DN Ghosh Roy, John Roberts and Matthias Schabel, Acoustic wave
propagation in a cylindrical waveguide in the presence of flow, submit-
ted to J. Sound and Vibration.

• Matthias Schabel and DN Ghosh Roy, Two and three dimensional ul-
trasound tomography in exterior and semi-endoluminal geometry, in
preparation for submission to Physics in Medicine and Biology.

• DN Ghosh Roy, John Roberts, Matthias Schabel and SJ Norton, The
Method of Adjoint Field in Inverse Scattering of Plane Waves, Invited
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Talk delivered at the Acoustical Society of America Annual Convention,
Providence RI, June 2006.

10 Conclusions and Future Work

This project set an ambitious research plan; while not every proposed element
of the work detailed in the initial grant submission has been fully achieved,
we have made substantial progress on a number of fronts. In particular,
we have developed and implemented code for performing full-wave acoustic
inversion that is functions in 2D and 3D and for both the exterior-exterior
and exterior-interior source/detector geometries. We have demonstrated the
feasibility of frequency hopping as a means of eliminating the need for em-
pirical regularization of the inversion algorithm and have demonstrated the
ability to reconstruct large objects in the presence of simulated noise with
excellent fidelity (up to grid sizes of 256×256 in 2D and 40×40×40 in 3D).
Computation time for reconstruction remains a challenge.
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Figure 1: Figure 1. The geometry of the ultrasound scanner for acquiring ul-
trasonically scattered data in time and frequency. (a) The receiver array: 128
mm × 16 mm, 960 total elements. (b) The plan view of the scanner showing
the scatterer and the transmitting-receiving arrangement. The entire set up
is immersed in a water bath. The transmitter and receiver rotate as a solid
body around the axis shown. Data collection is at every 20 of rotation. (c)
The focusing geometry. Both the transmitter and the receiver are focused
with a focal length of 60 mm. The transmitter has a lens for focusing while
the receiver is surface is curved.
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Figure 2: Plots showing the angular variation of the field emitted by a
catheter-based miniature emitter. (a) A Neumann catheter. k0 = 50, and
φ0 = 0.1850. (b) A Robin catheter. α = 15. k0, φ0 as in (a). (c) Emitter
radiating in an unbounded space. Other parameters same as in (a).
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The propagation of noise from the data to the reconstructed speed of sound image by inverse
scattering within the framework of the Lippmann-Schwinger integral equation of scattering is
discussed. The inversion algorithm that was used consisted in minimizing a Tikhonov functional in
the unknown speed of sound. The gradient of the objective functional was computed by the method
of the adjoint fields. An analytical expression for the inverse scattering covariance matrix of the
image noise was derived. It was shown that the covariance matrix in the linear x-ray computed
tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was
also analyzed in the limit of the linearized Born approximation, and the results were found to be in
qualitative agreement with those recently reported in the literature for Born inversion using filtered
backpropagation algorithm. Finally, the applicability of the analysis reported here to the obstacle
problem and the physical optics approximation was discussed. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2713671�

PACS number�s�: 43.60.Pt, 43.60.Rw �EJS� Pages: 2743–2749
I. INTRODUCTION

Inverse scattering1–4 is an intensely researched area in
current applied mathematics, and has wide applications in
almost all branches of modern science and technology, from
medical imaging and nondestructive evaluation of materials
to problems in astronomy. The general objective is to recover
an unknown physical object �scatterer and/or inhomogeneity�
from a set of appropriately defined data. The data in inverse
scattering consist of fields scattered by the unknown object
under wave excitation. The framework of analysis in this
work is the famous Lippmann-Schwinger integral equation of
scattering.1–4 Let T denote the integral operator of scattering.
If the scatterer is “weak,” then the uniform norm of T,
�T���1, where �T��= �1/2��k0a�2 �1−n��. 1−n is the devia-
tion of the scatterer refractive index n relative to that of the
background which was assumed to be unity, k0=2� /� is the
wave number of the exciting wave which is of wavelength �.
a is the dimension of the scatterer. Moreover, �x�t���

=max �x�t�� over a certain interval of t and x in a suitable
space X. In this case, the inverse scattering problem can be
linearized by considering only the single scattering events.
This is the well-known Born and Rytov approximation.5–7 In
these approximations, the incident wave is assumed to un-
dergo a phase shift of less than � in traversing the scatterer.
In general, however, the scatterer cannot be assumed to be
weak. Also, in practice, scattering is frequently in the reso-
nance region in which the wavelength is less than or compa-
rable to the characteristic size of the scatterer.1 Under such
conditions, �T�� cannot be considered to be small, and in-
verse problems in the resonance region are improperly posed

a�
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and nonlinear. The multiple scattering interactions between
the propagating wave and the inhomogeneity must be taken
into account. Linearization is, therefore, not possible, and the
inverse solutions are usually obtained by iteratively minimiz-
ing a suitably constructed, regularized objective function.

The scattered fields measured at the detectors are always
corrupted by noise, the sources of which are physical, but
can also arise from the numerics. The reconstructed image is,
therefore, also noisy. Moreover, the propagation of noise de-
pends upon the mathematical procedure by which the data
are transformed into the image, that is, the reconstruction
algorithm. Thus the understanding of how noise in the data
propagates to the image via a given reconstruction algorithm
is clearly an important problem, not only for understanding
the characteristics of the noise in the reconstructed images
produced by the algorithm, but also for comparing the per-
formances of reconstruction algorithms for given noise char-
acteristics in the measurements. The propagation of noise
under the weak scattering condition, where the linearized
Born or Rytov approximation holds, has been investigated by
several researchers.8–11 In this paper, the attention is focused
on the nonlinear inverse scattering of an arbitrary scatterer
with frequencies in the resonance region.

The paper is organized as follows. The direct problem
and its Fréchet differentiability are briefly reviewed in Sec.
II. The inversion algorithm and the calculation of the gradi-
ent of a nonlinear functional via the adjoint field12–14 are
presented in Sec. III. The inverse scattering covariance ma-
trix of the image noise is derived in Sec. IV, and its relation
to that of the linear x-ray computed tomography appears in
Sec. V. In Sec. VI, the inverse scattering covariance matrix is
specialized to the limiting case of the Born approximation.
Section VI also includes a short discussion about the appli-

cability of the present analysis to obstacle problems and
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physical optics approximation. Finally, a brief summary of
the work is presented in Sec. VII.

II. THE DIRECT PROBLEM AND FRÉCHET
DIFFERENTIABILITY

The scattering is described by the Lippmann-Schwinger
integral equation,1–4 which is

��x� = �in�x� − k0
2�

�

G�0��x�y���y���y�, � � Rd,

�1�
d = 2,3,

subject to Sommerfeld’s radiation condition:

lim�x�→��x�m���x��
sc − ik0�sc� = 0,

m= �d−1� /2, and the limit is uniform in �x� in all directions,
where d is the dimensionality of the problem. � is the com-
pact support of �, that is, a bounded region in space. �in�x�
=eik0k̂0·x, k̂0�Sd−1, the unit sphere in Rd, is the incident
plane wave. �=�in+�sc is the total field, �sc being the scat-
tered component. From Eq. �1�.

�sc�x� = − k0
2�

�

G�0��x�y���y���y�, x � � . �2�

In Eqs. �1� and �2�, ��x�=1− �c0 /c�x��2 describes the spatial
variation of the unknown inhomogeneity to be recovered,
and the support of � is assumed to be compact. c�x� is the
speed of sound in the object. G�0��x �y� is the continuous
free-space Green’s function. G�0��x �y�= �i /4�H0

�1��k0 �x−y � �
in two dimensions �2D�, and G�0��x �y�= �1/4��eik0�x−y� / ��x
−y � � in three dimensions. H0

�1� is the zeroth-order Hankel
function.15

The solution of Eq. �1� can be written as

� = L−1�in. �3�

In Eq. �3�, L= I+G�: L2���→L2��� is the Lippmann-
Schwinger operator. I is the identity, and G the Green func-
tion operator. Furthermore, Eq. �2� can be recast as

F��� = �sc. �4�

The scattering operator F��� in Eq. �4� is Fréchet differ-
entiable. That is, there exists a linear operator, F�, the
Fréchet derivative of F, such that �F��+h�−F���−F�h �
�o��h � �, h�L2��� being an arbitrary vector. Some details
about the existence and uniqueness of the Fréchet derivative
can be found in Hohage.16

The mathematical form of the derivative is of impor-
tance to the discussions that follow. A terse derivation is,

therefore, presented. Let �̃=��. Then F���=G�̃, and Eq. �1�
becomes

L†�̃ = ��in, �5�

†
in which L = I−�G is the operator adjoint to L. Also,
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� = �in + G�̃ , �6�

Differentiating F���=G�̃ formally in � yields: F�=G�̃�.
From Eqs. �5� and �6�, it is not difficult to show that

L†��̂�h�=�h, from which it follows that F�=G�L†�−1�.
In finite space dimensions, the operators G, L, and L†

are replaced by their corresponding matrix operators, which
are denoted here by G, L, and L†, respectively. We then ob-
tain the Jacobian matrix of the scattered field, namely

Jsc = G�L†�−1��, �7�

and its transpose

Jsc
T = ��L−1G . �8�

� is used to denote a diagonal matrix. Thus 	��
ij =�ij	ij.
Let M be the number of the detectors, and the grid be of size
N
N. Then Jsc is a M 
N2 matrix.

III. THE INVERSION ALGORITHM

The solution of the inverse scattering problem was ob-
tained by minimizing the following nonquadratic, Tikhonov
type functional:

���� = �1/2���sc − �me�T�−1��sc − �me� + �� − �*�2
2.

�9�

�me is the measured �noisy� field, � the covariance matrix
of the noisy measurements, and �0,  small, the regu-
larization parameter. �* is the initial estimate. It is known17

that the regularizing term, as written in Eq. �9�, contributes to
the smoothness of the solution. It is to be noted that the
functional, ����, is nonquadratic since the scattering opera-
tor, F��� in Eq. �4� is nonlinear.

Let �,�=��� be the functional derivative of � with
respect to �. The basic reconstruction is then given by the
solution which is the null point of the gradient. However, in
order to calculate the error propagation from data to image, it
is necessary to specify the mathematical form of the func-
tional derivative. In the present work, the derivative was ob-
tained via the use of the adjoint fields. The result is12

�,� = Re�
j=1

NW

���j
� j

†� + 2�� − �*� , �10�

where NW is the total number of the waves incident on the
scatterer, and � j

† is the adjoint field. � j
† is given by

� j
† = L−1� j

†in, � j
†in = Gr̃j . �11�

In Eq. �11�, r̃ j =� j
sc−� j

me is the complex residual vector at
the detectors. Its mth component, � jm

sc −� jm
me, the complex

residual at the mth detector, is

r̃ jm = �Re�rjm�/Re�� jm
2 �� + i�Im�rjm�/Im�� jm

2 �� . �12�

Re�Im� is the real �imaginary� part of a complex variable,
and the overbar implies complex conjugation.

A comparison of Eq. �11� with the Lippmann-Schwinger
solution in Eq. �3� shows that � j

† can be obtained from Eq.
�1� if � j

†in is substituted for �in in that equation. Then from

Eq. �10� it follows that the computation of the functional
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˜̄

derivative, �,�, of the objective function, � in Eq. �9�, re-
quires the solutions of only two forward problems, one for �,
and another for �†, for any incidence. It should be mentioned
at this point that a closely related problem occurs in nonlin-
ear tomography where the derivative of a nonlinear operator
is calculated via the solution of a linear adjoint problem,
called adjoint differentiation.18

The reconstruction algorithm, therefore, consists in solv-
ing the system: �,�=0. The solution of the inverse problem
then reduces to that of locating the zeros of a nonlinear sys-
tem of equations given in Eq. �10�. It is this algorithm that
forms the basis for the analysis of the image noise in this
work.

IV. THE PROPAGATION OF NOISE

Let �= ��+�� be a random quantity in which �� is the
ensemble mean and �� the noise component. Following this
notation, �= ��+��, �= ��+��, �sc= ��sc+�sc, �†= ��†
+�†, and �me= ��me+n. ��me is the noise-free data, and
hence ��me=�tr

sc, �tr
sc denoting the field scattered by the true

object. Implicit is the assumption that the magnitudes of the
fluctuations are small compared to their mean values. Equa-
tion �10� now becomes

�,� = Re�����† + ���† + ��†���

+ �higher order terms� + 2��� − �*� + 2��.

�13�

For the simplicity of notation, the sums over the index j for
the incident field were omitted in Eq. �13�. These will be
introduced at the end. Setting the right-hand side of Eq. �13�
to zero, and separating the mean and the random part, yields

Re�����†� + 2��� − �*� = 0,

for the ensemble mean, and

Re����† + ��†��� + 2�� = 0 �14�

for the random part. We also introduce the assumption that
the iterations have converged to within a 	 neighborhood of
the solution, in which case, the term ��†�� in Eq. �14� can
be neglected, being of the higher order. Equation �14� then
reduces to

Re�����
†� + 2�� = 0, �15�

where �, as earlier, denotes a diagonal matrix.
Noting that ��†�0 by virtue of the above-introduced

assumption, the random part, �†, of the adjoint field, �†, is
given by the relation: �†= �L−1�†in, where �†in is the random

part of �†in=Gr̄̃, as defined in Eq. �11�. Moreover, �L is the
Lippmann-Schwinger operator in which �= ��, i.e., �L= I

−G���. The quantity, r̄̃, defined in Eq. �12�, contains both

the data noise, n̄̃, as well as the noisy component of the

scattered field. Let r̄̃ be written as: r̄̃= r̄̃sc+ n̄̃, where r̄̃sc de-

notes the latter. Then
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�† = �L−1G�r̄̃sc + n̄̃� , �16�

where r̄̃sc is the noise component of the scattered part of r̄̃
and n is the data noise. From the definition in Eq. �12� for

r:

r̄̃ jm
sc =

Re �̄ jm
sc

Re � jm
2 − i

Im �̄ jm
sc

Im � jm
2 , �17�

and a similar expression applies to n̄̃. From Eqs. �8� and �16�,
one obtains

Re�����
†� = Re�Jsc

T �r̄̃sc + n̄̃�� . �18�

In order to proceed further, the scattered �sc is expressed
in terms of the object ��. It is readily verified that �sc

=Jsc�
�. In view of Eq. �2�,

�sc = G����. �19�

Now replacing �= ��+�� and �= ��+�� in the Lippmann-
Schwinger Eq. �1�, separating out the ensemble averaged and
the random part on both sides of the result, it is readily
obtained that

�� = ��L−1G������ �20�

to the first order. Substituting Eq. �20� in Eq. �19� then yields
�sc=Jsc�

�, upon using Eq. �7�. The identity also follows
from the definition of the Jacobian matrix.

We next use the relation �sc=Jsc�
�, in Eq. �17�, and re-

place the result in Eq. �18�. Substituting the outcome in Eq.
�15�, and upon setting the result to zero yields

�Re�Jsc
T �Re��−2�Re�Jsc� + Im�Jsc

T �Im��−2�Im�Jsc�

+ 2I��� = Re�Jsc
T �Re��−2�Re�n̄�

+ Im�Jsc
T �Im��−2�Im�n̄� . �21�

In Eq. �21�, � denotes the covariance matrix of the data
noise. Thus �ij − =�ij.

In order to simplify the notations, let us define Pi�J�
= Pi	��−1��Jsc�
, and Pi�JT�= Pi	�Jsc

T �Pi��−1�
, i=1,2. The
subscripts on P are used to indicate the real and imaginary
parts of the operator. Thus Pi=1�Pi=2� imply that only the real
�imaginary� parts of the operators in the argument of P are to
be considered. Moreover, we now sum over the number of
incident waves NW in the above-presented expressions, and
define A=� j=1

NW�i=1
2 Pi�Jj

T�Pi�Jj�, and B=� j=1
NW�i=1

2 Pi�JT�Pi�n̄j�.
Equation �21� then takes the form: �A+2I���=Bn̄, from
which

�� = �A + 2I�−1Bn̄ . �22�

Now cov���= ���	��
T. From Eq. �22�, it follows immedi-
ately that

cov��� = �A + 2I�−1�Bn̄	Bn̄
T��A + 2I�T�−1. �23�

For a nonstochastic scatterer such as an acoustic inho-
mogeneity, it is reasonable to assume that data are uncorre-
lated with respect to the receiving transducers and view
angles. The scattering data are, however, complex, and their

real and imaginary parts are both corrupted by noise. This is
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expressed through the complex �. A correlation can exist
between �Re and �Im. However, for a nonrandom acoustical
scatterer, it is reasonable to neglect this correlation �see also
Ref. 11�. In other words, cov�njm ,nj�m��=�2	 j j�	mm�. The co-
variance matrix in Eq. �23� then reduces to

cov��� = �A + 2I�−1A��A + 2I�−1�T. �24�

Equation �24� is the covariance matrix of the image noise in
the inverse scattering algorithm given in Eq. �10�.

V. LINEAR PROBLEM AND REAL DATA: X-RAY CT

The P operators in Sec. IV are nonlinear, i.e., they de-
pend nonlinearly on the solution ��. This is explicitly indi-
cated in the fundamental equation of scattering, namely,
�sc=F���, �Eq. �4�, Sec. II�. F��� indicates that F is a non-
linear functional of �. Contrarily, if the operator F acts lin-
early on �, as for example, if F is a matrix acting on a vector
�, then it is written as F�. In Eqs. �7� and �8� for the Jaco-
bians, the nonlinearity is expressed through ��� and �L,
both of which are ��-dependent. The complex nature of the
scattered data introduces a further layer of complication.
Clearly, the covariance matrix must simplify if the operator
is linear and the data g are real, that is, g=F� instead of g
=F��� as in Eq. �4�.

An important case of a linear problem with real data is
that of the x-ray computed tomography.19,20 In x-ray CT, the
scattering matrix F becomes the projection matrix H, the ijth
element of which represents the intersection of the jth x ray
with the ith resolution element. The noisy x-ray CT data can
be written as g=H�+n= �g+n. In this case, Eq. �24� for
cov��� simplifies to

cov��� = �HT�−2H + 2�−1�HT�−2H�


��HT�−2H + 2�−1�T. �25�

A special case of Eq. �25� is the so-called MAP �maxi-
mum a posteriori� x-ray CT reconstruction algorithm21 in
maximum entropy with Poisson noise in the data. The corre-
sponding objective function is given by

���� = log	p�g���
 + R��� , �26�

where R��� is a positive definite symmetric matrix regular-
izer. p�g ��� is the likelihood of data g given a distribution �,
assumed to be positive. For Poisson noise,

p�g��� = � j=1

MN �exp��i=1

N
Hji�i�� ��i=1

N Hij�i�gj

gj!
. �27�

Note that the quantity, gj, in the denominator in Eq. �27� is
an integer number, being the number of counts. MN is the
total number of data, N being the size of the computational
domain, and M the number of view angles. Carrying out the
calculations of �,�, with the log-likelihood function,
log p�g ���, p�g ��� in Eq. �27�, �for details, see Ref. 22�, it

is obtained that
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�HT�−2H + 2R��� = HT�−2n . �28�

From Eq. �28�, the covariance for x-ray CT follows immedi-
ately. It is to be noted that for Poisson noise, � is the same as
��g.

A comparison of Eqs. �24� and �28� shows that the error,
��, has the same mathematical form in both x-ray CT and
acoustic inverse scattering, namely,

�� = �C + R���−1En ,

where R�� is the regularizing term. However, in the case of
linear x-ray CT, C and E involve the linear operator of pro-
jection, H, and its transpose. In acoustic inverse scattering,
however, C and E are relatively more involved, being non-
linearly dependent in �. Further details and an application of
Eq. �28� to a dynamic SPECT problem appear in Ref. 22,
and some related results can be found in Refs. 23–25.

VI. THE LIMIT OF WEAK SCATTERING

In this section, Eq. �24� for the inverse scattering cova-
riance matrix is analyzed in the limit of weak scattering in
which the linearized Born approximation holds. Let us first
assume that Re � jm=Im � jm=�, ∀j, m, and therefore,
Re �2=Im �2=�2I. �2 is a diagonal matrix: ��2�ii=�i

2. From
now onward, attention will be confined to two dimensions.

Let

J = �
j=1

NW

Re�Jj
TJ̄j� . �29�

In the Born approximation, Eq. �8� reduces to

Jj
T = in� jG . �30�

in� j is the diagonal matrix for the jth incidence. That is,

�in� j�kk=exp�ik0d̂j ·xk�, d̂j being the unit vector specifying
the direction of the jth incident wave. Also, the far-field
Green’s function has the form:

Gk� =
eik0R

�R
� ia

2
e−i�/4��k0J1�k0a��e−ik0d̂�·xk, �31�

in which use was made of the asymptotic expression:1

Hn
�1��t� =� 2

�t
ei�t−n�/2−�/4��1 + �1

t
��, t → � .

In Eq. �31�, d̂� is the unit vector in the direction of the �th
detector and R is the radius of the detector ring. The compu-
tational domain was assumed to have been discretized into
N2 circular resolution elements following the widely used
discretization scheme of Richmond.26 The quantity, a, in Eq.
�31�, is the radius of such a circular pixel in the present, 2D,
case. The geometry of the so discretized computational do-
main is shown in Fig. 1. In Fig. 1, xk is the coordinate of the

center of the kth circle in the grid, and d̂j, d̂� are the unit
vectors along the jth incident wave and the �th detector,
respectively. The detectors are located on a ring of radius R
surrounding the scatterer.

From Eqs. �30� and �31�, we obtain the Jacobians in the

Born approximation, namely
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�Jj
T�km =

eik0R

�R
� ia

2
e−i�/4��k0J1�k0��eik0�d̂j−d̂m�·xk, �32�

and

�J̄j�m� =
e−ik0R

�R
�−

ia

2
ei�/4��k0J1�k0��e−ik0�d̂j−d̂m�·x�.

�33�

Replacing Eqs. �32� and �33� in Eq. �29�, and after some
straightforward algebra, it follows that

Jk� = C�Re�
j=1

NW

�
m=1

M

e−ik0�d̂j−d̂m�·�xk−x��� , �34�

where the constant C= ��k0a2 /2R��J1�k0a��2. Note that Eq.
�34� reflects the well-known fact that in the Born approxi-
mation the Fourier frequencies of the object are confined
within a circle �in 2D� of radius 2k0, and therefore, the maxi-
mum frequency that can be present in the recovered object is
bounded above by 2k0.

Typically in practice, the product NWM is a large num-
ber for any realistic discretization of the computational do-
main. For example, for a 64
64 size of the computational
grid, this product is 4096 at the minimum. In practical com-
putations, this number is often larger as the system is almost
always overdetermined in actual numerics. We, therefore, ap-
proximate the sums in Eq. �34� by integrals. Moreover, the
sums over j and m are independent sums. Assuming without
any loss in generality that NW=M, each individual sum can

FIG. 1. A schematic of the geometry for the Born calculation illustrating the
discretization of the computation grid into circular region. xk is the location

of the center of the kth resolution element in the grid. d̂j, d̂� are the unit
vectors along the jth incident wave and the �th detector, respectively. The
detectors are located on a ring of radius R surrounding the scatterer. In the
numerical computation in this work, the grid was discretized into 32
32
circular elements each of radius a. R /a was 200. That is, the detectors were
placed on a radius which was 200 times the radius of a circular pixel.
be approximated by
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�
j=1

NW

cos�z cos �� �
NW

�
�

0

�

cos�z cos ��d� = NWJ0�z� ,

�35�

recalling15 that the integral in Eq. �35� is one of the repre-
sentations of the cylindrical Bessel function J0. Also, in Eq.
�35�, z=k0 �xk−x��.

In view of Eq. �35�, Eq. �24� for the covariance reduces
to the following expression in the Born approximation,
namely

�covB���� = �2�T−1ST−1� . �36�

In Eq. �36�, S=CNW
2 Z, Zk�=J0

2�k0 �xk−x� � �, and the constant
C was defined earlier. Moreover, T=S+2I. Note that S and
T are each a block Toeplitz Toeplitz block or a BTTB
matrix.27

It should be mentioned that the object enters the calcu-
lation through the noise in the data. In x-ray CT, for example,
the object information is contained in �−2 in Eq. �28�. Simi-
larly, in the Born approximation, under the assumptions
made in the derivation of Eq. �24� �essentially, the same as-
sumptions also appear in Ref. 11�, the object appears through
�2 in Eq. �36� which may originate, say, from speckles. Thus
the behavior of the covariance is determined completely by
Eq. �36�. It is illustrated here assuming a 32
32 computa-
tional grid.

The BTTB S matrix �1024
1024� is shown in Fig. 2�a�,
and the corresponding BTTB T matrix �1024
1024� is

−4

FIG. 2. �a� The 1024
1024 S matrix �Eq. �36�� for a 32
32 grid. �b� The
corresponding T matrix with =10−4. The block Toeplitz block structure of
the matrices are visible.
shown in Fig. 2�b� with the regularizing parameter =10 .
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Toeplitz structures are clearly visible in Fig. 2. The covari-
ance, covB���, given in Eq. �36�, is shown in Fig. 2. The
variance is found to be constant in each pixel, whereas the
off-diagonal elements of the covariance matrix are highly
peaked around the center pixel, and decay rapidly in an os-
cillatory manner as the interpixel separation increases. In
Fig. 3�a�, � /a was 2, while in Fig. 3�b�, � was three times the
radius of a resolution element. In a recently published
report,11 the noise properties of Born objects were calculated
using direct Born inversions. It is known5–7 that Born data
can be inferred by filtered backpropagation �FBPP�, which is
the analog of filtered backprojection of x-ray CT19,20 in
acoustical scattering. The behavior of the Born covariance
matrix in Ref. 11 using FBPP inversion is qualitatively simi-
lar to that in Fig. 3. In both cases, the constant diagonal �the
variance� and rapidly decaying oscillatory off-diagonal ele-
ments were obtained. Moreover, both methods produced �2

dependence in the covariance matrix. However, the depen-
dence on k0 is relatively more indirect in inverse scattering
than in FBPP which produced a simple k0

3 dependence. Since
the inversion algorithms are different, only a qualitative
agreement is to be expected.

Remark. The preceding analysis of the propagation of
noise from the data to the reconstructed image was carried
out in the framework of the Lippmann-Schwinger integral
equation of scattering. The Lippmann-Schwinger equation
provides the appropriate framework for scattering calcula-
tions from inhomogeneities, that is, when the scattering po-
tential has no discontinuity across its support. However, the
analysis can also be extended to the obstacle problem in
which the potential is discontinuous across its boundary. For

FIG. 3. The behavior of the covariance matrix, cov��� �Eq. �36�� with pixel
separation. The variance or the diagonal elements of the matrix are constant.
Panel �a� corresponds to the case in which � /a=2, whereas �b� is for � /a
=3. Covariance is peaked at the center and falls off rapidly with the inter-
pixel separation.
the obstacle problem, the appropriate framework of analysis
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is the Helmholtz representation,1,3 which involves surface in-
tegrals. However, the inversion can be formulated into a
problem in nonlinear parameter estimation1 involving objec-
tive functions which are essentially similar to � in Eq. �9�.
The parameters to be estimated in the case of the obstacles
are the variables which parametrize the surface, e.g., spheri-
cal harmonics. The algorithm, Eq. �10�, remains unchanged,
and the functional derivative �now in the parametric vari-
ables of the surface� of the objective functional can again be
obtained, as in the case of the inhomogeneities, via the
method of adjoint fields, and again requiring the solutions of
only two forward problems. The details of the procedure
appear in Ref. 28. However, in the case of obstacle scatter-
ing, the derivatives are not the regular partial derivatives �as
in Sec. III�, but are the so-called shape derivatives,29–33

which are defined in the following manner. If V :R3→R3 is a
vector field that deforms a domain �0�R3→�t�R3, t be-
ing the perturbation, then the first-order shape derivative of
�, ��1�, is defined by

��1� = limitt→0
�t�I + tV��X� − �0�X�

t
, ∀ X � R3.

�0, �t denote the fields for the unperturbed and perturbed
boundary, respectively, corresponding to the boundary con-
dition of the scattering problem, ��1� is the total, material, or
substantial derivative. Moreover, ��1�=��+V ·��, �� being
the partial derivative, namely, ��=limitt→0��t�X�−�0�X�� / t.

In a similar vein, the analysis can also be extended to the
limit of the physical optics approximation. It is to be noted
that the physical optics approximation bears the same rela-
tion to the Helmholtz representation as the Born approxima-
tion does to the Lippmann-Schwinger integral equation. In
both cases, the total field within the surface integrals is re-
placed by the incident waves weighted by suitable constants.

VII. CONCLUSIONS

The propagation of noise from the data to the speed of
sound image, reconstructed by inverse scattering within the
framework of the Lippmann-Schwinger integral equation of
scattering, was investigated. The inversion algorithm consti-
tuted in locating the zeros of the gradient of a Tikhonov-type
functional in the unknown speed of sound. The gradient of
the functional was computed by the method of the adjoint
fields. An analytical expression was obtained for the image
covariance matrix. When applied to the case of a linear map-
ping with real data, the inverse scattering expression reduced
to that of the linear x-ray computed tomography. This was
demonstrated by considering the maximum a posteriori like-
lihood algorithm using the maximum entropy functional. The
full inverse scattering covariance was also investigated in the
limiting case of the linearized Born approximation. It was
found that in this linearized approximation, the variance re-
mained uniform over the image, whereas the off-diagonal
elements of the covariance matrix exhibited a fast decaying
oscillatory behavior. Similar behaviors were also obtained in
a recent report on Born inversion using the filtered back-
projection algorithm. Finally, the applicability of the analysis

presented to the problem of obstacle scattering and in the

Roy et al.: Noise propagation in inverse scattering



limit of the physical optics approximation was briefly dis-
cussed.
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Abstract

The propagation of acoustic waves in a circularly cylindrical waveguide in the pres-

ence of flow was investigated. An integral equation for the total pressure in the

duct was derived, and subsequently reduced in the Born limit, i.e., for flow speeds

much slower than the speed of sound in the quiescent medium. The Born term was

then used to determine the mode phase speeds, and hence the effects of flow on

wave propagation in the duct. Results are reported for the parabolic laminar and a

mixed parabolic-flat turbulent velocity distribution of a homogeneous fluid flowing

inside ducts of Dirichlet, Neumann and Robin surfaces. For the Neumann bound-

ary and mixed flow, the integral equation yielded results similar to those obtained

by recently reported perturbative calculations. However, the mathematics is more

transparent in the integral equation method which is also more versatile, and can

be applied with relative ease to numerous practical situations which may involve

inhomogeneous media, arbitrary flow profiles and boundaries.
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1 Introduction

The propagation of acoustic waves in circular ducts carrying flow is an impor-

tant problem with a well-developed literature [1–13]. Various techniques exist

for the solution of the problem including series solutions of the governing dif-

ferential equations (e.g., [8, 10]), finite element calculations (e.g., [6, 12]), and

hydrodynamical approach (see e.g., [9,13]). Recently, a perturbative approach

was reported [11] for calculating the changes in the mode phase speeds due

to flow in a sound-hard duct with a view to obtaining accurate flow metering

(see also [5] for this application). In this paper, we discuss the application of

the integral equation approach, well-known [14,15] from acoustical scattering

theory, to the solution of the wave propagation problem in a duct in the pres-

ence of flow. A formal integral equation is derived for the total pressure field

in the flowing fluid, which is then reduced in the Born limit. In this limit, it is

assumed that the flow speeds are much slower than the speed of sound in the

quiescent medium (ie. in the absence of flow). The method was used in order

to determine the mode phase speeds in the presence of the flow, and hence

investigate the effects of the flow on the wave propagation. Results were ob-

tained for the laminar parabolic as well as a mixed laminar-turbulent velocity

profile of the fluid flowing in ducts with a Dirichlet (sound-soft), Neumann

(sound-hard) and Robin (impedance) boundaries.

In the Born approximation, with Neumann boundary, the integral equation

produced results similar to those that were obtained in [11] using a pertur-

bative approach. The mathematics of the present method is, however, more

∗ Corresponding author.

Email address: dilip@ucair.med.utah.edu (D. N. Ghosh Roy).
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transparent. Unlike most methods, the integral equation does not (a priori)

assume any particular form of the pressure field except its time harmonic-

ity. The field is rather a result of the calculations. In addition, the integral

equation formalism is applicable to problems including nonuniform flow and

arbitrary velocity profiles and boundary conditions. In addition, the powerful

techniques that exist for solving various acoustical scattering and inverse scat-

tering problems, can be brought to bear on the problem of flow under quite

general conditions.

The plan of the presentation is as follows. In Section 2, the basic equations are

presented, and a formal solution for the total pressure field in a flowing fluid is

developed. The solution is then specialized to the Born limit. Section 3 derives

Green’s functions which satisfy the boundary condition and Sommerfeld’s ra-

diation condition at infinity. In Section 4, the incident pressure and the Born

approximated total pressure field are derived. Section 4 further demonstrates

how the Born approximated inhomogeneous part of the total pressure leads

to the determinations of the phase speeds of the propagating modes in the

presence of flow. Section 5 contains the details of the numerics. The results

obtained are then discussed in the following Section 6. The text is concluded

by a few remarks on the extension of the integral equation approach to general

flow profiles, fluid media and waveguide surfaces.

2 The Equations of Wave Propagation

Consider the flow of a homogeneous fluid in a long cylinder of radius R. Let

V = {vi}3
i=1 describe the velocity field of the fluid. Then t = t′, xi = xi + vit

′

represent the coordinate transformations between the laboratory (unprimed)
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system and the one co-moving with the flow (primed). In the primed coordi-

nate system, the flow equations are:

∂ρ

∂t′
+ ρ0

∑

i

∂vi

∂x′
i

= 0 :momentum conservation, (1)

ρ0
∂vi

∂t′
+

∂p

∂x′
i

= 0 :mass conservation, (2)

ρ and ρ0 are the perturbed and unperturbed mass density, respectively, and

p is the pressure. It is well-known [16] that under the above coordinate trans-

formation, Eqs. (1) and (2) combine to yield:

∇2p + k2
0

[

1 +
i

ω
V · ∇

]2

p = 0, (3)

assuming time harmonicity. ω is the angular frequency, and k0 = ω/c0 the

wavenumber, c0 being the sound speed in the quiescent medium. In the first

approximation with respect to the Mach number, M = |Vmax|/c0, and as-

suming that the flow is quasi-steady (typical time variation τ >> ω−1), the

second-order term in Eq. (3) can be neglected [17] resulting in the approxi-

mation:

∇2p + k2
0

[

1 +
2i

ω
V · ∇

]

p = 0. (4)

In cylindrical coordinates r = {ρ, φ, z}, ∇2 = ∇2
⊥ + ρ−2∂φφ + ∂zz with ∇2

⊥ =

∂ρρ + (1/ρ)∂ρ. It is further assumed that the flow is along the z-direction

which is also the directrix of the cylindrical waveguide and is radially varying.

Therefore, V = V(ρ, φ, z) = ẑV (ρ), ẑ being the unit vector in the z-direction.

Equation (4) then becomes:

∇2p + k2
0

[

1 +
2i

ω
V (ρ)

]

∂p

∂z
= 0. (5)
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Let G(0)(r|rS) be the “free-space” Green’s function, that is, Green’s function

in the quiescent fluid, between the source location, rS, and the observation

point r. It is described by:

[

∇2 + k2
0

]

G(0)(r|rS) = −1

ρ
δ(ρ − ρS)δ(φ − φS)δ(z − zS). (6)

Furthermore, let G(0)(r|rS) also satisfy the boundary condition on the waveg-

uide, namely

BG(0) = 0 on the surface of the cylinder, (7)

B being the boundary operator. B = I, I the identity operator, corresponds to

the Dirichlet, B = n̂ ·∇, n̂ the unit normal on the boundary, to the Neumann,

and B = n̂ · ∇ + iα to the Robin boundary. The parameter α denotes the

quantity Rβ, β = β ′ + iβ” being the acoustic admittance of the cylinder wall.

In terms of G(0), the total pressure, p, at any point in the fluid, can be obtained

from Eq. (5) as:

p(r) = pinc(r) +
∫

Ω

dr′
{

Ṽ (r′)G(0)(r|r′) ∂

∂z

}

p(r′). (8)

pinc(r) is an appropriate incident pressure field, and Ω is the volume of the

waveguide. Moreover, in Eq. (8), Ṽ (x) = −(2ik0/c0)V (x).

Equation (8) is essentially the Lippmann-Schwinger integral equation of scat-

tering [14, 15] except that the propagator is now G(0)(r|r′){∂/∂z} instead of

G(0) alone, as in the usual scattering equation. It is noteworthy that the flow it-

self (via V(r)) provides the scattering centers and acts as an inhomogeneity, no

physical particulate matters being necessary to provide the centers, although

the presence of additional physical inhomogeneities (of arbitrary nature) poses

5



no problem in the integral equation approach. In other words, the flow gives

rise to what may be termed acoustic velocity inhomogeneity for diffraction (see

also [18]). Since the diffraction scales as the Mach number [19], the scattering

from the velocity inhomogeneity will indeed be small for M << 1, and the

Born approximation can be invoked. It is well-known [14–16,20,21] that in the

Born approximation, Eq. (8) reduces to:

p(r) = pinc(r) +
∫

Ω

dr′
{

Ṽ (r′)G(0)(r|r′) ∂

∂z

}

pinc(r′). (9)

In other words, the Born approximation consists in replacing the total pres-

sure, p, in the integral by the incident field, pinc. The integral on the right-hand-

side of Eq. (9) is the inhomogeneous term in the solution for the total pressure,

p, and is denoted by pih in the sequel. Therefore, p(r) = pinc(r) + pih(r). It is

Eq. (9) which is of interest here.

The free-space Green’s function, G(0), is derived next.

3 The ”Free-Space” Green’s Function

As was already pointed out, unlike the standard Green’s functions in an un-

bounded space ((i/4)H
(1)
0 (k0|x−y|)) in 2-D, H

(1)
0 being the cylindrical Hankel

function of order zero of the first kind [22] and exp(ik0|x − y|)/4π|x − y|) in

3D), G(0) here is a boundary Green’s function which satisfies both the condi-

tion on p imposed on the boundary of the waveguide, as well as the radiation

condition at infinity. For a boundary of arbitrary shape, this Green’s function

may be difficult to obtain, but fortunately for boundaries of canonical shapes

(as in the present case), it can be obtained rather easily.
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In order to obtain an expression for G(0), we first note that:

δ(φ − φS) =
1

2π

∞
∑

ℓ=−∞

eiℓ(φ−φS) (10)

in terms of the definition of the angular Fourier transform pair, (f(φ), f̂(m)) :

f(φ) =
∞
∑

m=−∞

f̂(m)eimφ, f̂(m) =
1

2π

π
∫

−π

f(φ)e−imφdφ.

Moreover, upon using the orthogonality relation for the Bessel functions:

R
∫

0

drrJn(κℓsr)Jn(κ
′
ℓsr) = 0, κℓs 6= κℓs′, (11)

which is known to hold under quite general conditions [23], the radial delta

function, (1/ρ)δ(ρ − ρS), can be expressed as:

1

ρ
δ(ρ − ρS) =

2

R2

∑

L

J̃L(ρ)J̃L(ρs), (12)

L in Eq. (12) denotes the joint indices, {ℓs}. In other words,
∑

L =
∑∞

ℓ=0

∑∞
s=0 .

The orthonormalized Bessel function, J̃L(z), is:

J̃L(z) = A−1
L Jℓ

(

κL

z

R

)

, (13)

the normalization constant, AL, being:

AL =
R√
2





R
∫

0

dρρ
[

J2
ℓ

(

κL

ρ

R

)]





1

2

. (14)

The eigenvalues, κL, in Eqs. (13) and (14), are obtained from the operator

equation,

K(κL) = 0, (15)
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the operator, K, being boundary dependent via Eq. (7). From Eqs. (10), (12),

and (6), it follows that:

[

∇2 + k2
0

]

G(0)(r|rS) = − 1

πR2

∑

L

eiℓ(φ−φS)g̃L(ρ, ρS)δ(z − zS; L), (16)

where g̃L(ρ, ρS) = J̃L(ρ)J̃L(ρS).

Let

gℓ(ρ, ρS; z, zS) = g̃L(ρ, ρS)g̃L(z, zS), (17)

be the reduced Green’s function. Equation (16) then becomes:

G(0)(r|rS) = − 1

πR2

∑

L

eiℓ(φ−φS)g̃L(ρ, ρS)g̃L(z, zS). (18)

From Eqs. (18) and (16), it is readily seen that g̃L(z, zS) is given by the

equation:

{

∂zz + Λ2
L

}

g̃L(z, zS) = −δ(z − zS), (19)

where ΛL =

√

k2
0 −

(

κL

R

)2
. The solution of Eq. (19) is:

g̃L(z, zS) =
i

2

1

ΛL

eiΛL|z−zS|. (20)

Collecting the results in Eqs. (17), (18), and (20), the free-space Green’s func-

tion in the waveguide is finally derived to be:

G(0)(r|rS) = − i

πR2

∑

L

eiℓ(φ−φS)J̃L(ρ)J̃L(ρS)
1

ΛL

eiΛL|z−zS |. (21)

The phase speed of the waves, cL = ω/ΛL, is boundary dependent through

ΛL.
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4 The Total Pressure

The total pressure, p, is given by Eq. (9). The incident pressure, pinc, is given

by:

pinc(r) =
∑

L

p
(0)
L eiℓφJL(ρ)eiΛLz (22)

corresponding to V = 0. Replacing Eqs. (21) and (23) in Eq. (9), and after

some straightforward algebra, the total pressure, p, is obtained:

p(r) =
∑

L

p
(0)
L eiℓφJL(ρ)eiΛLz − i

πR2

∑

L

∑

s′

p
(0)
L′

ΛL′

ΛL

CL,s′(R)eiℓφJ̃L(ρ)

·
∫

R1

dz′eiΛL|z−z′|eiΛ
L′z′. (23)

In Eq. (23), L′ = {ℓ, s′}, and L, s′ = {ℓ, s, s′}. Moreover, the quantity, CL,s′(R)

is given by:

CL,s′(R) =
2k2

0

ω

R
∫

0

dρ′ρ′J̃L(ρ′)V (ρ′)JL′(ρ′).

Let us next define the quantity:

FL,s′ = − 2i

R2
p

(0)
L′

eiℓφ

ΛL

J̃ℓ

(

κL

ρ

R

)
∫

R1

dz′eiΛL|z−z′|eiΛ
L′z′. (24)

In view of Eq. (24), the inhomogeneous part of the solution, pih in Eq. (23)

can be written as:

pih(r) =
∑

L

∑

s′

ΛLs′CLs′FLs′. (25)

At this point, let us note that:

G(0) ∗ pinc =
∑

L

∑

s′

C
(0)
L,s′FL,s′, (26)
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in which

C
(0)
L,s′ =

R
∫

0

dρρJ̃ℓ

(

κL

R
ρ
)

Jℓ

(

κL′

R
ρ
)

,

and * denotes the operation of convolution. Using Eq. (26) in Eq. (25) results

in:

pih(r) =
∑

L

∑

s′

ΛL′

CL,s′

C
(0)
L,s′

(

G(0) ∗ pinc
)

L,s′
. (27)

Since from the orthogonality relation (11), C
(0)
L,,s′ = (R2/2)A2

Ls′δss′, Eq. (27)

then becomes:

pih(r) =
∑

L

ΛL

CL

C
(0)
L

(

G(0) ∗ pinc
)

L
. (28)

Next consider a single term in the summation in Eq. (28). In other words,

consider only a single mode, say, L, propagating in the waveguide. In this

particular case, we have

pih(r) = ΛL

CL

C
(0)
L

(

G(0) ∗ pinc
)

L
. (29)

It must be noted that Eq. (29) is the Born approximation of the unperturbed

inhomogeneous term, ΛL(CL/C
(0)
L )p, in the unperturbed differential equation

of propagation. Therefore, the differential equation of which Eq. (29) is the

Born approximation, is:

[

∇2 + k2
0 − DL

]

pL(r) = 0, (30)

in which

DL = ΛL

CL

C
(0)
L

. (31)
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From Eq. (30), it follows that the phase speed for the mode under consideration

in the presence of the flow is cL = ω/
√

Λ2
L − DL. The contribution to the phase

speed due to the flow is, therefore, the difference:

(∆c)L =
ω

√

Λ2
L − DL

− ω

ΛL

. (32)

Equation (32) is similar to the result which was obtained in [10] using a per-

turbative approach.

5 Numerical Computations

The details of the numerics are presented in this Section. Eigenvalues were

calculated from the operator Eq. (15) which gives Jℓ(κL) = 0 for the Dirichlet,

J ′
ℓ(κL) = 0 for the Neumann and κLJ ′

ℓ(κL) − iαRJℓ(κL) = 0 for the Robin

boundary. Eigenvalues for the Dirichlet and Neumann cases were generated

using a web interface [24] to Wolfram Research Inc.’s Mathematica software.

For the Robin boundary, the eigenvalues were computed with The Mathwork’s

MATLAB software using Newton’s method.

The corresponding normalization constants are: AL = Jℓ+1(κL), AL = Jℓ(κL)
√

1 − ℓ2

κ2

L

,

and AL = Jℓ(κL)
√

1 − ℓ2+α2R2

κ2

L

, respectively.

Two values of the quantity, ζ = |β|k0R namely, 0.3 and 1.2 are reported for

the impedance boundary. For ζ = 0.3, β < λ/2πR, and for β in this range,

the roots of the Robin boundary can be obtained analytically (e.g., see [16]):

κR
00 =

√
2iRα; k00 = k0 + (β ′′ + iβ ′)/R, (33)
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κR
ℓs = κN

ℓs

[

1 − (β ′′ + iβ ′)k0R

{κN
ℓs}2 − s2

]

; ΛR
ℓs = Λ

(0)
ℓs +

(β ′′ + iβ ′)k0

RΛ
(0)
ℓs

[

1 −
(

l

κN

ℓs

)2
] . (34)

Moreover,

Λ
(0)
ℓs =

√

√

√

√k2
0 −

(

κN
ℓs

R

)2

, (35)

and the superscripts R (N) indicates Robin (Neumann) eigenvalues, respec-

tively. The impedance eigenvalues were calculated by numerical root finding.

For ζ = 0.3, they were identical to those computed from Eqs. (33) and (34)

thereby verifying the accuracy of the root founding algorithm. However, for

ζ = 1.2, β was not small compared to λ/2πR, the analytical results were not

valid, and the numerical roots had to be used.

Following [11], two flow velocity distributions were considered, which were:

vl(ρ) = 2v̄

(

1 − ρ2

R2

)

: laminar flow, (36)

vm(ρ) = avl(ρ) + (1 − a)vt(ρ) : a mixed laminar − turbulent flow. (37)

v̄ is the mean flow speed, and the subscript l, m denote parabolic laminar and

mixed flow, respectively. Moreover, again as in [11], a was:

a(Re) =
1

1 +
(

Re
Re0

)n , (38)

where n = 4, and Re is Reynold’s number: Re = 2ρv̄R/µ, ρ, µ being the

fluid’s mass density and viscosity, respectively. R= 0.006 m in the numerics.

Numerical computations were performed at the frequency of 1 MHz.
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6 Results and Discussions

The relative changes, (∆c)L, in the mode phase speeds due to flow, given in

Eq. (32), constituted the primary results in this work. The profiles of (∆c)L

vs. v̄ are shown in Figs. 1 through 6, the relevant parameters in the calcu-

lations described in the figures. Considering the large amount of data (two

flow profiles, three boundaries and a large κL vector with ℓ = 0, 1 and 2, and

s = 0, 1, 2, 3, 4, for each ℓ) involved, a limited, yet a representative set of re-

sults is presented. The profiles for the Dirichlet boundary are plotted in Figs.

1(a) - 1(d), and the Neumann results are displayed in Figs. 2(a) - 2(d). The

data for the impedance boundary with ζ = 0.3, are shown in Fig. 3, whereas

Fig. 4 shows the same results, but for ζ = 1.2. β is real in Figs. 3 and 4,

imaginary β showing qualitatively similar variations. Moreover, Figs. 3 and 4

show the real part of (∆c)L.

One distinguishing feature of the plots is that (∆c)L (Re ((∆c)L) for the

impedance condition) exhibits the same overall variation with v̄ for all three

boundaries. If the flow is laminar, (∆c)L increases linearly with mean speed

for any L, whereas for the mixed flow, the increase is nonlinear. This can

be understood from the following considerations. To the first-order in M, a

Taylor expansion of
√

Λ2
L − DL yields:

(∆c)L ∼ DL

Λ2
L

=
1

Λ2
L

CL

C
(0)
L

, (39)

where Eq. (31) was used. Moreover, the norm of
(

CL/C
(0)
L

)

reflects the norm

of V, and for the laminar flow, this norm varies directly with v̄. Hence, Eq. (39)

results in linear variations of (∆c)L with v̄ when the flow is laminar. For the

mixed flow, however, the velocity distribution is nonlinear in v̄ via the factor

13



a (see Eq. (37)), and a depends nonlinearly on v̄ through its dependence on

Reynold’s number (cf. Eq. (38)). The nonlinearity is clearly seen in all the

plots for the mixed flow for all the boundary conditions considered.

The second distinguishing feature is an overall fanning out of (∆c)L as s

increases, all other parameters (ℓ, mean flow, frequency and the waveguide)

remaining constant. This follows from the fact that the eigenvalues, κL, are

monotonically increasing functions of s, resulting in the decrease in the phase

speed, ΛL. In addition, the spread undergoes a general increase with both mode

number, ℓ, and mean flow. The increase with ℓ follows from the interlacing

property [22] of the zeros of Bessel functions, namely, κℓ,1 < κℓ+1,1 < κℓ,2 <

κℓ+1,2 < κℓ,3 < · · · . Furthermore, since
(

CL/C
(0)
L

)

, increases with v̄, the spread

of the phase speed deviations increases with the mean flow speed.

In the Robin boundary, attenuation of the waves may be expected. In other

words, (∆c)L may have imaginary components. It can be seen from Eq. (35)

that attenuation is expected to be significant near, and of course, above the

cut-off frequency of a mode. For the modes reported in this paper, the numer-

ical calculations showed that the modes were away from their cut-off limits

at the carrier frequency of 1 MHz. Attenuation was, therefore, not expected

to be significant. The results of the numerical computations corroborate this,

as can be seen from Fig. 4, where some typical variations of the attenuation

with flow are plotted. Figure 4(a) show Im(∆c)L vs. v̄ for ζ = 0.3, l = 0,

and for the mixed flow. The corresponding results for ζ = 1.2 are plotted

in Fig. 4(b). The attenuation is seen to be two orders of magnitude smaller

than Re(∆c)L. Qualitatively similar behavior was observed for the other mode

numbers. Im(∆c)L for l = 2 in Fig. 3(b) are smaller in magnitude than those

for l = 0 in Fig. 3(a). This behavior was typical of Im(∆c)L irrespective of
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whether the flow was laminar or mixed.

We conclude our main discussions with the following remark.

Remark: The integral Eq. (8) is quite general, and can accommodate practical

physical situations. The incident field that appears in this equation can be

arbitrary, and the medium (or a part thereof) can be inhomogeneous. In the

latter case, the differential Eq. (4) must be modified to:

[

∇2 + k2
0(1 + ǫ(r)) +

2ik2
0

ω
V(r) · ∇

]

p(r) = 0, (40)

and the corresponding inhomogeneous part, pih(r), becomes:

pih(r) =
∫

R1

dr′G(0)(r|r′)
[

k2
0ǫ(r

′)χ(r′) +
2ik2

0

ω
V(r′) · ∇

]

p(r′). (41)

In Eqs. (40) and (41), ǫ is the medium’s inhomogeneity, and χ is the charac-

teristic function of the compact region occupied by ǫ. The acoustic velocity

inhomogeneity is now augmented by the additional inhomogeneity, ǫ(r′), which

provides physical scattering centers. Equations (40) and (41) are representa-

tives of numerous practical engineering problems involving flow mixed with

particulate matters. The above equations hold for M < 1. In addition, if ǫ is

smaller than k0, then Born approximation can be invoked. In the general case,

however, ǫ may not be small, and the second order term in the velocity may

have to be incorporated. Fortunately, the integral in Eq. (41) is a convolution

integral, and can be accomplished by fast solvers such as CG-FFT (conjugate

gradient-fast Fourier transform) [25, 26]. Furthermore, depending upon the

relative magnitudes of the velocity and the physical scattering centers, WKB

type approximation can be applied.
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Fig. 1. (∆c)ℓ vs. v̄ for the Dirichlet boundary conditions, f = 1MHz: (a) laminar

flow, ℓ = 0, (b) laminar flow, ℓ = 2, (c) mixed flow, ℓ = 0, (d) mixed flow, ℓ = 2.

solid: s = 0, dot: s = 1, dash: s = 2, dash-dot: s = 3, dash-dot-dot-dot: s = 4,

long-dash: s = 5
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Fig. 2. (∆c)ℓ vs v̄ for the Neumann boundary conditions: (a) laminar flow, ℓ = 0,

(b) laminar flow, ℓ = 2, (c) mixed flow, ℓ = 0, (d) mixed flow, ℓ = 2. solid: s = 0,

dot: s = 1, dash: s = 2, dash-dot: s = 3, dash-dot-dot-dot: s = 4, long-dash:s = 5
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Fig. 3. Re(∆c)ℓ vs. v̄ for the Robin boundary conditions, f = 1MHz: (a) ζ = 0.3,

laminar flow, ℓ = 0, (b) ζ = 0.3, mixed flow, ℓ = 2 (c) ζ = 1.2, laminar flow, ℓ = 0,

(d) ζ = 1.2, mixed flow, ℓ = 2. solid: s = 0, dot: s = 1, dash: s = 2, dash-dot: s = 3,

dash-dot-dot-dot: s = 4
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Fig. 4. Im(∆c)ℓ vs. v̄ for mixed flow with the Robin boundary conditions, ζ = 1.2,

f = 1MHz: (a) ℓ = 1, (b) ℓ = 2. dot: s = 1, dash: s = 2, dash-dot: s = 3,

dash-dot-dot-dot: s = 4
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